Feeds:
Posts
Comments

Posts Tagged ‘smooth ergodic theory’

In a recent paper, M. Andersson and C. Vasquez have introduced a new and useful estimate related to Pliss Lemma (see previous blog entry for its statement together with a proof).  One considers some real numbers a_1,\dots,a_N such that for some reals B<\alpha and 0\leq\kappa\leq1:

  • a_k\geq B;
  • |\{1\leq k\leq N:a_k\geq \alpha\}|\geq (1-\kappa)N.

In contrast to Pliss Lemma, one assumes a lower bound (instead of an upper bound) and a high frequency of  large values (instead of just a large average). Andersson and Vasquez then show that the fraction of Pliss times can be made large by taking \kappa is sufficient small.

Lemma (Andersson-Vasquez). Given B\leq \beta<\alpha, the fraction of Pliss times, i.e.,  k such that

\forall 1\leq\ell\leq k\quad \frac1{k-\ell+1}(a_\ell+\dots+a_k) \geq \beta\qquad (*)

among 1,\dots,N is at least 1-\kappa\frac{\alpha-B}{\alpha-\beta}.

In this situation, we say that \beta is the target average.

Note that this lower bound is close to 1 when \kappa is small whereas  in Pliss Lemma this only occurs when \alpha\approx A.

Andersson and Vasquez provide a direct proof. Here we deduce it as a corollary of Pliss Lemma.

Proof. Obviously we can assume that

(*) 1-\kappa\frac{\alpha-B}{\alpha-\beta}>0.

Let a'_k=1 if a_k\geq\alpha, a'_k=0 otherwise. We apply Pliss Lemma to this sequence with upper bound A'=1, average \alpha'=1-\kappa and target average \beta'=\frac{\beta-B}{\alpha-B}. The required inequality \beta'<\alpha' is equivalent to \kappa(1-\beta')^{-1}<1 which follows from (*). We obtain a fraction \frac{\alpha'-\beta'}{A'-\beta'}=1-\kappa\frac{\alpha-B}{\alpha-\beta} of Pliss times. To conclude note that if k is such a Pliss time, then the average of a along all intervals [\ell,k] is at least \beta=\beta'\alpha+(1-\beta')B. \square

Advertisements

Read Full Post »

Pliss’ lemma is a simple combinatorial tool very useful for nonuniformly hyperbolic dynamics. It is about finite sequences of real numbers a_1,\dots,a_N (N\geq1). Assume that:

\tfrac1N(a_1+\dots+a_N) \geq \alpha for some \alpha (the average is good).

Fix \beta<\alpha. Say that an (integer) interval I\subset\{1,\dots,N\} is bad if \tfrac1{|I|}\sum_{i\in I} a_i<\beta. Otherwise the interval is called good. An index 1\leq k\leq n is Pliss if all subintervals [\ell,k] for 1\leq \ell\leq k are good.

Lemma (Pliss). If A\geq \max(a_1,\dots,a_N) then there are at least \frac{\alpha-\beta}{A-\beta} N Pliss indices among \{1,\dots,N\}.

Note: the same bound holds for the trivial estimate:

|\{1\leq k\leq N: a_k\geq\beta\}| > \frac{\alpha-\beta}{A-\beta} N

 

Here is a proof, modeled after Kamae’s proof of the ergodic theorem.

For each non-Pliss index k define 1\leq \ell(k)\leq k to be the largest integer such [\ell,k] is bad. Let B\subset\{1,\dots,N\} be the set of non-Pliss indices and let \hat B:=\bigcup_{k\in B} [\ell(k),k]. Clearly B\subset \hat B. We can assume that B\ne\emptyset since otherwise there is nothing to show.

Claim. The intervals appearing in the above union are disjoint or nested.

Indeed, take two intersecting intervals, i.e., k,k'\in B such that k<k' and \ell(k)\leq \ell(k')\leq k. Note that [k+1,k'] is good by maximality of \ell(k'). Since [\ell(k'),k'] is bad, this implies that [\ell(k'),k] is bad. The maximality of \ell(k) implies that \ell(k)\geq \ell(k'), proving the claim.

It follows that \hat B can be written as the disjoint bad intervals. Therefore \tfrac1{|\hat B|}\sum_{k\in \hat B} a_k<\beta. This yields:

\alpha N \leq \sum_{k\in \hat B} a_i+\sum_{k\in[1,N]\setminus \hat B} a_i \leq \beta|\hat B| + (N-|\hat B|)A

A direct computation then concludes the proof of the lemma. QED

 

Pliss Lemma generalizes to infinite sequences, say (\alpha_n)_{n\geq1}. For backward Pliss indices, i.e., k\geq1 such that the intervals [\ell,k] are good for all 1\leq\ell\leq k,  it is enough to apply the previous, finitary version to intervals [1,N].

Lemma (Pliss, backward, infinite version). Let \alpha:=\liminf_N \frac1N(a_1+\dots+a_N) and let A:=\sup_{n\geq1} A_n. Given any \beta<\alpha, the lower density of backward Pliss times for parameter \beta is at least \frac{\alpha-\beta}{A-\beta}.

Forward Pliss times are a bit more delicate since an index 1\leq k\leq N can be forward Pliss for (a_1,\dots,a_N) but not for (a_1,\dots,a_M) for some M>N. Given k\geq1 which is not forward Pliss, let \ell(k) be the smallest integer \ell\geq k such that [k,\ell(k)] is bad. As before, the intervals [k,\ell(k)] (k\geq1) are disjoint or nested.  Setting \hat N:=\sup_{k\leq N} \ell(k), note that for each k\leq\hat N, \ell(k)\leq\hat N. Thus, we can estimate the number of forward Pliss times in [1,\hat N-1] by the finitary Pliss Lemma and obtain:

Lemma (Pliss, forward, infinite version). Let \alpha:=\liminf_N \tfrac1N(a_1+\dots+a_N) and let A:=\sup_{n\geq1} A_n. Given any \beta<\alpha, the upper density of backward Pliss times for parameter \beta is at least \frac{\alpha-\beta}{A-\beta}.

One can combine the two to obtain:

Lemma (Pliss, backward, bi-infinite version). Let \alpha=\min(\liminf_{N} \tfrac1{N}(a_{-N}+\dots+a_{-1}), \limsup_N\tfrac1N(a_1+\dots+a_N) and let A:=\sup_{n\in\mathbf Z} A_n. Given any \beta<\alpha, the upper density of backward Pliss times for parameter \beta is at least \frac{\alpha-\beta}{A-\beta}.

Note: the upper density of S\subset \mathbf Z is \limsup_{N,M\to\infty} \tfrac1{M+N+1}(a_{-M}+\dots+a_N).

Read Full Post »

Le 18 janvier, j’ai présenté au séminaire de dynamique de l’Institut Mathématique de Jussieu un nouvel aspect du travail accompli avec Sylvain CROVISIER et Omri SARIG. Nous obtenons l’unicité de l’état d’équilibre pour un potentiel régulier dès qu’on se restreint aux mesures ergodiques hyperboliques et à une classe homocline mesurée. Ceci s’applique aux difféomorphismes C^{1+} de variétés compactes avec un potentiel Hölder-continu ou bien géométrique.

Read Full Post »

With Sylvain CROVISIER and Omri SARIG, we show that C^\infty surface diffeomorphisms with positive topological entropy have at most finitely many ergodic measures of maximal entropy in general, and at most one in the topologically transitive case. This answers a question of Newhouse, who proved that such measures always exist.

To do this we generalize Smale’s spectral decomposition theorem to non-uniformly hyperbolic surface diffeomorphisms, we introduce homoclinic classes of measures, and we study their properties using codings by irreducible countable state Markov
shifts.

The preprint is on arxiv (you can also download the preprint here).

Read Full Post »

At the third conference on Dynamics of Differential Equations, I explained the following Spectral Decomposition Theorem for arbitrary smooth surface diffeomorphisms. It is mostly part of the joint work with Sylvain Crovisier and Omri Sarig.

 

Given some dynamics, say that X\equiv Y if the symmetric difference of the two subsets does not carry measures with positive entropy.

Theorem (B-Crovisier-Sarig). For a C^\infty diffeomorphism of a closed surface, let \{H(O_i)\}_{i\in I} be its infinite homoclinic classes. Then the non-wandering set satisfies: \Omega(f) \equiv \bigcup_{i\in I} H(O_i) with H(O_i)\cap H(O_j)\equiv\emptyset and f:H(O_i)\to H(O_i) topologically transitive. More precisely, for each i\in I, there is a compact set A_i and an integer _i\geq1 such that f^{p_i}:A_i\to A_i is topologically mixing, H(O_i)=\bigcup_{j=0}^{p_i-1} f^j(A_i), A_i=f^{p_i}(A_i) and f^{-j}(A_i)\cap f^{-k}A_i\equiv\emptyset if 0\leq j<k<p_i.

If f|\Omega(f) is topologically transitive and h_{{\rm top}}(f)>0, then there is a unique infinite homoclinic class. If, additionally, f|\Omega(f) is topologically mixing, then this homoclinic class is itself topologically mixing.

 

I also explained that we have a good understanding of the dynamics inside the pieces (measures of maximum entropy, periodic orbits, Borel classification and the periods involved in the three descriptions are the above period p_i). See these slides for details.

Read Full Post »

A l’occasion de la journée Systèmes dynamiques, probabilité, statistiques à Quimper, j’ai présenté la notion de facteur de Bowen et son utilité pour l’étude des difféomorphismes de surfaces. On peut ainsi rendre injective les extensions finies construites par Omri Sarig, en ne perdant qu’une partie faiblement errante (union dénombrable de parties errantes).

Read Full Post »

Lors d’une journée autour de la soutenance de la thèse de Jordan EMME, j’ai présenté les résultats obtenus avec Sylvain CROVISIER et Todd FISHER sur l’entropie des difféomorphismes sans domination en régularité C^1.

J’ai expliqué différentes questions sur l’entropie topologique et notamment le problème de (non)densité des difféomorphismes “stables pour l’entropie” (ie, dont l’entropie topologique est localement constante) et les réponses apportées par nos résultats basés sur un renforcement de résultats classiques de Newhouse et plus récemment de Bonatti, Catalan, Tahzibi et Gourmelon et d’autres.

Voici mes transparents et la prépublication  sur arxiv.

Read Full Post »

Older Posts »