Feeds:
Posts
Comments

Posts Tagged ‘measurable dynamics’

0. Problème du générateur

L’existence d’une partition génératrice finie ou dénombrable est équivalente à la possibilité de plonger un système dans un décalage sur un alphabet fini ou dénombrable, ie, \mathbb N^{\mathbb Z} et donc conditionne la réductibilité de maints problèmes au cas symbolique. Cette problématique est également fortement liée à l’entropie.

Je répète ici la présentation de Benjamin WEISS, Countable generators in dynamics” (1989) qui a donné une version borélienne (ou si l’on veut mesurable) du théorème de Rokhlin.

1. Théorème de Rokhlin (1963)

Enoncé: Soit (X,\mathcal X,\mu,T) un système dynamique probabiliste inversible défini sur un espace de Rokhlin. Si ce système est ergodique, alors il existe une partition dénombrable \mathcal P dite génératrice unilatérale: \bigvee_{k\leq0} T^{-k}\mathcal P= \mathcal X modulo \mu.

Lemme. Pour toute partition finie \mathcal P et tout mesurable C de mesure non-nulle, il existe une partition dénombrable \mathcal Q de C, telle que \bigvee_{n\leq0} T^{-n}(\mathcal Q\cup\{X\setminus C\})\geq \mathcal P.

Preuve du lemme: On subdivise C selon le temps de premier retour, puis chaque morceau correspondant au temps de retour n selon \bigvee_{k=0}^{n-1} T^{-k}\mathcal P. La partition \mathcal Q ainsi obtenue est mesurable et dénombrable. Par ergodicité, l’orbite de presque tout point x visite C en un temps -n avec n\geq0 minimal. L’élément de \bigvee_{n\leq0} T^{-n}(\mathcal Q\cup\{X\setminus C\}) contenant x est donc contenu dans un élément de \mathcal P. Dans un espace de Rokhlin, ceci permet de conclure.

Preuve du théorème: On peut  supposer (\mu,T) apériodique, le théorème étant sinon trivial. Il existe donc une suite de mesurables disjoints C_0,C_1,C_2,\dots de mesures non-nulles. Dans un espace de Rokhlin, il existe une suite de partitions mesurables finies telles que \bigvee_{n\geq0} \mathcal P_n=\mathcal X modulo \mu. Le lemme fournit pour chaque entier n\geq0, une partition dénombrable \mathcal Q_n de C_n. On pose \mathcal Q:=\bigcup_{n\geq0} \mathcal Q_n\cup\{X\setminus\bigcup_{n\geq0}C_n\}. C’est bien une partition dénombrable vu la disjonction des C_n et \bigvee_{n\in\mathbb Z} T^{-n}\mathcal Q\geq\bigvee_{n\geq0} P_n=\mathcal X modulo \mu.

2. Version borélienne

Contexte: (X,\mathcal X,T) est un automorphisme d’un espace de Borel standard. On le muni de l’idéal errant \mathcal W. Un borélien est dit complètement positif si le complémentaire de son orbite positive \bigcup_{n\geq1} T^nB appartient à \mathcal W. Autrement dit, l’ensemble des points qui ne visite pas B une infinité de fois dans le passé et dans le futur appartient à \mathcal W.

Lemme: Si T est apériodique (sans points périodiques), alors il existe un borélien complètement positif satisfaisant A\cap TA=\emptyset.

Remarque: Si A est complètement positif, alors TA l’est aussi: X\setminus\bigcup_{n\geq1} T^n(TA)=(X\setminus\bigcup_{n\geq1}T^nA) \cup \{x\in A:\forall n\geq2 T^nx\notin A\}, l’union de deux éléments de \mathcal W (utilise le théorème de récurrence de Poincaré).

On itère ce lemme en posant A_0:=A et en considérant le système (A_n,\mathcal X\mid A_n,T_{A_n}), ce qui fournit A_{n+1},TA_{n+1}\subset A_n, donc disjoints de TA_n et de A_0,\dots,A_{n-1}.

Corollaire: il existe une suite de boréliens disjoints C_n,n\geq0, complètement positifs.

Un espace de Borel standard admet une suite de partitions finies dont l’union est génératrice. A partir de là, il suffit de reproduire la preuve du théorème de Rokhlin.

3. Commentaires

En général il n’existe pas de générateur fini – l’existence d’une mesure de probabilité invariante d’entropie infinie suffit à l’interdire. Dans le cadre mesuré, c’est la seule objection. Dans le cadre borélien,

Question (B. Weiss 1989): Un système dynamique borélien standard n’admettant pas de mesure finie invariante possède-t-il toujours un générateur à deux éléments?

 

 

Advertisements

Read Full Post »