Feeds:
Posts
Comments

Posts Tagged ‘mathematical physics’

Renaud Leplaideur a exposé au groupe de travail de théorie ergodique ses tout derniers travaux avec H. Bruin, A.T. Baraviera et A.O. Lopes. Ils ont en particulier construit, pour tout 0<a<1, une application f_a:S^1\to S^1 de classe C^1 présentant une transition de phase et un compact K, invariant, uniquement ergodique et indifférent: (i) f_a'\geq 1; (ii) (f_a')^{-1}(1)=K; (iii) le potentiel - \log f_a' possède plusieurs mesures d’équilibre.

Ceci généralise l’exemple bien connu de Manneville-Pomeau. Plusieurs autres résultats suggèrent des liens entre cette non-unicité et une certaine invariance par renormalisation du potentiel, sans qu’il soit clair qu’il s’agisse là d’un phénomène général ou encore d’un analogue mathématique du lien entre phénomène critique et invariance par renormalisation établi et exploité par les physiciens théoriciens depuis Wilson et les années 1970.

Advertisements

Read Full Post »