Feeds:
Posts
Comments

Archive for the ‘talks’ Category

A l’occasion de la journée Systèmes dynamiques, probabilité, statistiques à Quimper, j’ai présenté la notion de facteur de Bowen et son utilité pour l’étude des difféomorphismes de surfaces. On peut ainsi rendre injective les extensions finies construites par Omri Sarig, en ne perdant qu’une partie faiblement errante (union dénombrable de parties errantes).

Advertisements

Read Full Post »

At the conference Beyond Uniform Hyperbolicity 2017 in Provo, I presented my joint work with S. Crovisier and T. Fisher about the entropy of C^1-diffeomorphisms with no dominated splitting. I tried to stress the questions it raises (and the partial answers we have obtained) about topological entropy.

Here are the slides. The papers are here and here.

Read Full Post »

Le 21 novembre dernier Thomas Fernique a défendu son habilitation à diriger des recherches au Laboratoire d’Information de Paris-Nord. Il étudie les pavages et tout particulièrement les pavages ordonnées et apériodiques, modélisant les célèbres quasi-cristaux découverts dans les années 1980. Ses travaux explorent les liens entre différentes classes naturelles de tels systèmes dynamiques multidimensionnels (ie, définis par une action de R^d, d\geq 1): pavages sofiques et substitutifs; pavages planaires vs. sofiques ou de type fini; pavages obtenus par recuit.

L’exposé était suivi d’un pot agrémenté d’un pavage de Penrose (pavage défini par un plan plongé dans R^5) en chocolats blancs et noirs, digne suite d’une autre réalisation à découvrir ici.

Read Full Post »

Lors d’une journée autour de la soutenance de la thèse de Jordan EMME, j’ai présenté les résultats obtenus avec Sylvain CROVISIER et Todd FISHER sur l’entropie des difféomorphismes sans domination en régularité C^1.

J’ai expliqué différentes questions sur l’entropie topologique et notamment le problème de (non)densité des difféomorphismes “stables pour l’entropie” (ie, dont l’entropie topologique est localement constante) et les réponses apportées par nos résultats basés sur un renforcement de résultats classiques de Newhouse et plus récemment de Bonatti, Catalan, Tahzibi et Gourmelon et d’autres.

Voici mes transparents et la prépublication  sur arxiv.

Read Full Post »

On sait que les homéomorphismes du tore isotopes à un Anosov linéaire admettent celui-ci comme facteur. Andres Koropecki a expliqué le travail en cours suivant:

Théorème (de Carvalho, Koropecki, Tal). Soit un homéomorphisme f du tore bidimensionnel isotope à l’identité et dont l’ensemble de rotation est d’intérieur non-vide. Supposons f  de classe C1+. Alors il existe un facteur topologique F vérifiant:

  • F est encore un homéo du tore isotope à l’identité
  • l’ensemble de rotation est inchangé
  • F est topologiquement mélangeant
  • l’union de ses fers à cheval topologiques est dense
  • les fibres de la semiconjugaison sont des intersections décroissantes de disques

Les propriétés supplémentaires de F par rapport à f ne restreignent donc pas l’ensemble de rotation.

La semiconjugaison est obtenue en quotientant par les compacts connexes homologiquement inessentiels et dont le diamètre du relevé reste borné sous la dynamique.

Remarques. Le théorème d’Oxtoby-Ulam permet de choisir F conservatif. L’hypothèse de régularité est peut-être purement technique.

Read Full Post »

J’ai présenté en séminaire les résultats obtenus avec Mike BOYLE d’une part (conjugaison borélienne modulo les mesures d’entropie nulle avec une chaîne de Markov topologique), avec Sylvain CROVISIER et Omri SARIG (nombre fini de mesures d’entropie maximale dans le cas C infini):

  • Séminaire d’Analyse de Bordeaux, 3 mars 2016 (transparents)
  • Séminaire de Systèmes Dynamiques, 2 février 2016.

Read Full Post »

One expects measure maximizing the entropy (m.m.e.) to be especially “interesting”, especially for dynamics with “some hyperbolicity”. For instance, under some (hyperbolicity) assumptions, one expects them to determine all the aperiodic invariant probability measure (see this expository paper). By a theorem of Newhouse (1987) based on Yomdin’s theory, C^\infty smoothness ensures the existence of some m.m.e.

Finite multiplicity is a harder question – often it can be solved only after a thorough understanding of the dynamics. It is a classical result for uniformly hyperbolic diffeomorphisms. I proved it in my thesis for C^\infty interval maps with nonzero entropy (finite smoothness is not enough, even though Ruelle’s inequality shows that all ergodic measures with lower bounded entropy have lower bounded Lyapunov exponents).

Here, at the School and Conference on Dynamical Systems at ICTP, I presented the following answer to a long standing question of Newhouse:

Theorem (B-Crovisier-Sarig). A C^\infty smooth diffeomorphism of a compact surface with nonzero topological entropy has finitely many ergodic measures maximizing the entropy.

You can see the slides here.

Read Full Post »

Older Posts »